Hall Ticket Number:

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. I Year II-Semester Backlog Examinations, May-2017

Mathematics-II

	Mathematics-11	
Time	e: 3 hours Note: Answer ALL questions in Part-A and any FIVE from Part-B	50
and a second	Part-A (15 Marks)	
1.	Find the directional derivative of $f(x, y, z) = xy^2 + 4xyz + z^2$ at the point (1, 2, 3) in the direction $(i - j + 2k)$.	[1]
2.	What is Integrating factor?	[1]
3.	Solve the differential equation $y''' - y'' - 4y' + 4y = 0$.	[1]
4.	Express $3x^2 + 5x - 6$ in terms of Legender polynomial.	[1]
5.	Express $J_3(x)$ in terms of $J_0(x)$ and $J_1(x)$.	[1]
6.	Evaluate $\int_{c} (x^2 - y^2) ds$, c is the closed curve $x = 3\cos t$, $y = 3\sin t$, $0 \le t \le 2\pi$.	[2]
7.	Find orthogonal trajectory of $y = x + ce^{-x}$.	[2]
8.	Write down particular integral of the differential equation $y'' - 2y'' - 5y' + 6y = 18e^x$.	[2]
9.	Define ordinary and singular points of an equation.	[2]
10). Define Beta and Gamma function.	[2]
	Part-B $(5 \times 7 = 35 Marks)$	
11	1. a) If $\overline{r} = xi + yj + zk$ and $r = \overline{r} $, show that the div $\left(\frac{\overline{r}}{r^3}\right) = 0$	[3]
	b) Apply Green's theorem to evaluate $\int [(2x^2 - y^2)dx + (x^2 + y^2)dy]$, where c is the	[4]
	boundary of the area enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = a^2$.	
12	2. a) Solve the differential equation $y' + 4xy + xy^3 = 0$.	[3]
	b) Show that the one parameter family of curves $y^2 = 4c(x+c)$ are self orthogonal.	[4]
13	3. a) Find the general solution of the equation $y'' + 16y = 32 \sec 2x$, using the method of variation of parameters.	[4]
	b) Find the solution of the differential equation $x^2y'' + 2xy' - 2y = 0$.	[3]
1	4. a) Find the power series solution about $x = 2$, of the initial value problem $4y'' - 4y' + y = 0$, $y(2) = 0$, $y'(2) = \frac{1}{e}$.	[3]
	b) Prove that ${}^{(n+1)}P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$	[4]